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Section 4 - Logistic regression 

This section discusses a method that can be used to analyse the association between a dichotomous 

(two-category) outcome measure and potentially explanatory variables. This method is a widely 

used approach and the following guide provides a detailed illustration of how we can use this logistic 

regression method to answer research questions with longitudinal data. 

 

What is logistic regression? 

Logistic regression is an analysis method that allows us to test the association between an outcome 

variable that is dichotomous (categorical with two levels) and predictor variables that are either 

continuous or categorical. We can use logistic regression to predict which of two categories a person 

is likely to belong to given certain other information. With our longitudinal data, we can use logistic 

regression to test the probability of an event occurring in later life or not, based on events in early 

life. 

 

Example research question: Is lower intelligence in childhood related to obesity in middle 

age? 

In this regression, the outcome variable will be a dichotomous variable, ‘not obese’ or ‘obese’ at age 

42, as explained below.  

All the predictor variables are the same as those used in the “General linear regression” and 

“Multinomial logistic regression” sections. It is always important to explore the data before running 

statistical models, so if you have not yet done so, please first look at the “Getting started and 

exploring the data” section. You will also need to construct a few of the explanatory variables before 

creating your regression model (as explained in that introductory section). 

 

Preparing the outcome variable: Obese or not at age 42 

For this regression, we are going to derive an outcome variable, obese42, that is dichotomous 

(comprised of two groups): ‘not obese’ and ‘obese’. We do this derivation using the variable bmi42, 

a continuous variable that we also use in the “General linear regression section”. The definition of 

obesity that we are using as the basis of our categorisation is from the World Health Organisation 

(WHO) standards (http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm). A BMI of 30 and over 

was defined as obese; a BMI below 30 as not obese. Creating the obese42 variable requires a series 

of commands as illustrated below. 

http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm
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We can then use the ‘tabulate’ command (abbreviated to ‘tab’) to get the frequency of the new 

variable. 

 

The output shows that, at age 42, approximately 1 in 6 (15.2%) of the sample are obese. 

 

 

Running the regression 

In the first regression we are going to run, there will only be one predictor variable ‘general ability’ 

at age 11, n920, which is a continuous variable. We are going to use the ‘logit’ command which 

displays the untransformed beta coefficients, which are in log-odd units, and their confidence 

intervals. These are often difficult to interpret, so are sometimes converted into odds ratios. If we 

wanted to get the odds ratios we could use the command ‘logistic’ instead of ‘logit’ or add the ‘or’ 

option (‘, or’) to the ‘logit’ example below. The odds ratio is the odds of success for one group 

divided by the odds of success for the other group, where in this example ‘success’ is the odds of 

being obese or not obese. When running a logistic regression in Stata, the dependent variable 

should be specified immediately after the ‘logit’ command, followed by the predictor variable(s). 
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The output above shows that the log likelihood of the fitted model is -1892.56. The number itself 

does not have much meaning, but when used in comparisons with other models, it can help to 

identify if the reduced model fits significantly better than the full model (which we will come back to 

later when we include other predictors in the model). The overall model is statistically significant 

(chi-square = 42.48, p=<.001), which means the model including ‘general ability at age 11’ fits the 

data statistically significantly better than the model without it, i.e. a model with no predictors. The 

‘pseudo R-squared’ gives a very general idea of the proportion of variance accounted for by the 

model; however it is not a reliable statistic, hence its name ‘pseudo’. 

In the table, we can see the coefficient, the standard error, the z statistic, associated p-values and 

the 95% confidence intervals of the coefficients. ‘General ability at age 11’ is statistically significant 

(Z=-6.52, p<.001). For every 1 unit decrease in general ability, the log odds of being obese (compared 

to not being obese) increases by 0.018. 

 

Updating the regression model 

Including potential confounding variables 

In the next model (M2), we will add a number of possible confounding variables to the regression: 

sex, parents’ education and family social class. First we will add sex, where 0=Male and 1=Female. 

This type of binary variable is also known as a ‘dummy variable’. In our regression analysis, the 

reference group is male. We are also going to include a few family background factors in the model; 

whether the cohort’s mother (n016nmed) and father (n716dade) left school at the minimum age or 

not, and the social class of the study participant’s father (n1171_2). Social class n1171_2 has 5 

categories: ‘I/II Prof & Managerial’, ‘III Skilled non-manual’, ‘III Skilled manual’, ‘IV Partly skilled’ and 

‘V unskilled’. In Stata we can use the prefix of ‘i.’ in the variable name i.n1171_2 which will 

automatically create dummy variable(s). The first category ‘I/II Prof & Managerial’ will be treated as 

the reference category for that variable. 
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‘General ability’ is still significant after controlling for the other predictor variables. For every 1 unit 

decrease in general ability, the log odds of being obese (compared to not being obese) increases by 

0.013. In addition, if the participant’s father was in the manual or unskilled social classes, by age 42 

the participant was more likely to be obese, compared to participants whose fathers were 

professional or managerial. In this model, the coefficients for sex and mother’s and father’s 

education were not significant, that is to say, we have not found that the log odds of being obese or 

not obese at age 42 differ between men and women, or according to parental educational level. 

 

Including a childhood measure of BMI 

For our final model (M3), we will also add bmi11, the BMI of the participants when they were aged 

11. Doing so means that we will be adjusting for participant’s baseline BMI, and that will allow us to 
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focus on the subsequent change in BMI from age 11 to age 42, and therefore to measure both BMI 

and general ability over a comparable period, from childhood to middle age. 

 

The results above show that for a 1 unit increase in BMI at age 11, the log odds of being obese at age 

42 increases by 0.353. After controlling for BMI at age 11 and all the other predictors, being female 

compared to male decreases the log odds of obesity by 0.185. In addition, having a father in the 

lower social classes compared to one with a professional/managerial occupation increases the odds 

of obesity at age 42. 

 

Exploring predictors' influence and predicted probabilities on the outcome 

Testing the influence of a specific categorical variable 

We can examine the overall effect of social class using the ‘test’ command. To specify which levels of 

the categorical n1171_2 social class variable we wish to compare to the reference category (‘I/II Prof 

& Managerial’), we include a prefix denoting the numeric code for each other category (e.g. ‘III 

Skilled non-manual’ is the second category so this is denoted as 2.n1171_2). 
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From the output of the ‘test’ command above, we can see that the overall effect of social class is 

statistically significant (p<0.05). 

 

We can also examine the differences in the coefficients for each of the different social classes 

compared to the reference category. For instance, we could again use the ‘test’ command, as shown 

in the example below, to evaluate whether the coefficient for social class ‘III Skilled non-manual’ is 

equivalent to the coefficient for social class ‘III Skilled manual’. 

 

The output above shows that the p-value is under <.05 (our threshold for inferring statistical 

significance) and we can consequently say the coefficients for these two categories are different. 

 

Testing predicted probabilities of our explanatory variable of interest on our outcome variable 

Focusing on our predictor of interest ‘general ability’, we can use predicted probabilities to help 

understand the relationship between general ability and obesity in the model. In this example we 

want to calculate the predicted probability of obesity for a given score on the general ability test. 

Predicted probabilities can be calculated using the ‘margins’ command. We can use this command 

to create the predicted probabilities for values of the general ability test (n920 which ranges from 0 

to 79) from 10 to 80 in increments of 10. The ‘margins’ command uses the sample values of other 

predictor variables to calculate the average predicted probabilities on our predictor of interest. We 

can also use the ‘vsquish’ option in the command to help tidy up the output as this removes blank 

lines in output tables. 
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The first part of the output above tells us which row is associated with which general ability test 

score. Row 1 corresponds to a test score of 10, while row 8 is equal to a test score of 80. We can 

interpret from the table that as the test score at age 11 increases, the probability of obesity at age 

42 is decreasing from 21.8% to 10.2%. 

 

Plotting the predicted probabilities 

We can present the results as a graph by using the ‘marginsplot’ command, which plots both the 

predicted probabilities and their confidence intervals. 
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In the output plot above, the ‘predicted probability of obesity at age 42’ is on the Y axis and the 

‘general ability test score at age 11’ is on the X axis. The fitted line decreases from left to right, 

indicating that as general ability scores increase, the probability of obesity decreases. The predicted 

probability of obesity at age 42 would be 17.8% with a test score of 30 at age 11, compared to 12.9% 

with a test score of 60. 

 

Comparing model fit of the logistic regression models 

As we mentioned earlier, the log likelihood of the fitted model is used to compare to other models, 

to identify if the reduced model fits significantly better than the full model. In order to compare 

models, in Stata we can use the ‘estimates store’ and ‘lrtest’ commands. We will re-run the same 

models we have just completed in the previous logistic regression examples. Each model is 

estimated and stored using the command ‘est store’ under an arbitrary name; in this example we 

are labelling them M0 to M3. You can use the ‘quietly’ command in front of the ‘logistic’ command 

to run the models in the background (i.e. Stata stores the output rather than writing it out at the 

time the command is run). It is possible to include code comments or annotations (text that explains 

the code you are running) in the Stata command window by starting the comment line with an 

asterisk (‘*’). 
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We will then use the ‘lrtest’ command to test whether the log likelihoods for each model are 

significantly different to each other. 

 

In the output above, the log-likelihood test for M1 v M0 is the same result as the first model we ran 

in this set of ‘logit’ examples. This is because we are comparing the empty model (M0) with M1 

which has only one predictor variable: general ability (chi-square = 42.48, p=<.001). In the second 

comparison above (M2 v M1), we can see that the addition of sex and family background variables 

to the model marginally improves the fit (chi-square = 20.79, p=<.01), while adding a single predictor 

BMI at age 11 in M3 makes a notable further improvement to the model fit (chi-square = 526.14, 

p=<.001). The final test M0 v M3 compares the original model with no explanatory variables and our 

final model; and unsurprisingly given the other results, this again shows that adding all the 

predictors improves the fit over the empty model (chi-square = 589.41, p=<.001). 
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Regression diagnostics 

When modelling a binary outcome variable, unlike in linear regression there are no typically agreed 

statistical tests that can be used in the diagnostic process. However, you can find out more from the 

following sources: 

Menard, S. (2010). Logistic regression: From introductory to advanced concepts and applications. 

Thousand Oaks, CA: SAGE. 

Hilbe, J.M. (2009). Logistic regression models. Boca Raton, FL: Chapman & Hall/CRC. 

Hosmer, D.W. & Lemeshow, S. (2000). Applied logistic regression (2nd edition). New York, NY: Wiley. 


