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Section 5 - Multinomial logistic regression 

This section provides guidance on a method that can be used to explore the association between a 

multiple-category outcome measure and potentially explanatory variables. Multinomial logistic 

regression can offer us useful insights when we are working with longitudinal data and this section 

breaks down and discusses each of the key steps involved. 

 

What is multinomial logistic regression? 

Multinomial regression is an extension of logistic regression that is used when a categorical outcome 

variable has more than two values and predictor variables are continuous or categorical. We can use 

multinomial regression to predict which of two or more categories a person is likely to belong to, 

compared to a baseline (or reference) category and given certain other information. With our 

longitudinal data we can use multinomial logistic regression to test the probability of an event 

occurring (A) in later life compared to other potential outcomes (B, C), applying information 

gathered in early life. In order to make comparisons, we can use any of the events (A, B or C) as the 

baseline category. 

 

Example research question: Is childhood intelligence related to normal/healthy body-mass 

index (BMI) compared to being overweight or obese in middle age? 

In this regression the outcome variable BMI42_C is a categorical variable consisting of three groups – 

‘normal/healthy’, ‘overweight’ and ‘obese’. We are going to treat this variable as a nominal variable 

and conduct multinomial logistic regression. 

 

Preparing the outcome variable: BMI categories 

We will group the categories together based on the World Health Organisation (WHO) standards 

(http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm). Few of the sample were underweight 

(n=54, <1%) so in this example they will be included in the normal or healthy category. 

 

 

We can then look at the generated variable using the ‘tab’ command. 

http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm
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Just under half (48%) of our sample were normal or healthy weight, over a third (37%) were 

overweight and 15% were obese. 

All the predictor variables are the same as those used in the “General linear regression” and “Logistic 

regression” sections. It is always important to explore the data before running statistical models. To 

examine the data please look at the “Getting started and exploring the data” section. If you have not 

done so already you will also need to construct a few of the explanatory variables before creating 

your regression model (as explained in that earlier introductory section). 

 

Running the regression 

In Stata, we use the ‘mlogit’ command to estimate a multinomial logistic regression. As with the 

logistic regression method, the command produces untransformed beta coefficients, which are in 

log-odd units and their confidence intervals. (These are often difficult to interpret, so are sometimes 

converted into relative risk ratios. If we wanted to get the relative risk ratios we could add the ‘rrr’ 

option (‘, rrr’) to the ‘mlogit’ example below). With the ‘mlogit’ command, we also include the 

option ‘base’ to specify which category is the reference group. In this example ‘normal or healthy’ 

weight will be treated as the reference category. In the first regression we run, there will only be one 

predictor variable, ‘general ability’ at age 11 (n920), which is a continuous variable. 
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The iterations 0 through 3 listed in the top left-hand corner of the output above are the log 

likelihoods at each iteration of the maximum likelihood estimation. Iteration 0 is the log likelihood of 

the model with no predictors. When the difference between successive iterations is very small, the 

model has ‘converged’. The final iteration is the log likelihood of the fitted model. The log likelihood 

of the fitted model is -4499.12. The number itself does not have much meaning, but is used to 

compare to other models, to identify if the reduced model fits significantly better than the full 

model. The overall model is statistically significant (chi-square = 55.73, p=<.001), which means the 

model including ‘general ability’ at age 11 fits the data statistically significantly better than the 

model without it, i.e. a model with no predictors. The ‘pseudo R-squared’ gives a very general idea of 

the proportion of variance accounted for by the model, but it is not a reliable statistic hence its 

name ‘pseudo’. 

In the output above, we also get a tabulation of the coefficient, standard error, the z statistic, 

associated p-values and the 95% confidence intervals of the coefficients. This table is in two parts, 

labelled with the categories of the outcome variable BMI42_C. In both outputs, ‘general ability’ n920 

at age 11 is statistically significant. A 1 unit decrease in ‘general ability’ is associated with a 0.008 

decrease in the relative log odds of being overweight compared to a normal/healthy weight, and a 

0.022 decrease in the relative log odds of being obese compared to a normal/healthy weight. 
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Updating the regression model 

Including potential confounding variables 

In the next model, we will add a set of possible confounding variables to the regression: sex, parents’ 

education and family social class. First, we will add sex where 0=Male and 1=Female. This type of 

binary variable is also known as a ‘dummy variable’. In our analysis, the reference group will be 

‘male’ (as this group is coded as 0). We are also going to include a few family background factors in 

the model: whether the cohort’s mother (n016nmed) and father (n716dade) left school at the 

minimum age or not, and the social class of the study participant’s father (n1171_2). Social class 

n1171_2 has 5 categories: ‘I/II Prof & Managerial’, ‘III Skilled non-manual’, ‘III Skilled manual’, ‘IV 

Partly skilled’ and ‘V unskilled’. With multi-category variables such as this, you can use the prefix of 

‘i.’ in the variable name i.n1171_2 and Stata will automatically create dummy variable(s) for each 

category. The first category ‘I/II Prof & Managerial’ will be treated as the reference category. 
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Interestingly in the output we can see that ‘general ability’ is significant in the ‘obese’ versus 

‘normal/healthy’ BMI comparison, but not in the ‘overweight’ versus ‘normal/healthy’ BMI 

comparison after controlling for all the other predictors. A 1 unit decrease in ‘general ability’ test 

score is associated with a .014 increase in the relative log odds of being obese v normal/healthy BMI 

at age 42. Father’s social class also predicts obesity; it is associated with the odds of the study 

participant being overweight compared to normal/healthy BMI in the study participant. Males 

(compared to females) and participants whose mothers left education at the minimum age were 

more likely to be overweight or obese compared to normal/healthy BMI. 
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Including a childhood measure of BMI 

For our final model, we are going to include bmi11, the BMI of the participant when they were aged 

11. Doing so means that we will be adjusting for participant’s baseline BMI, and that will allow us to 

focus on the subsequent change in BMI from age 11 to age 42, and therefore to measure both BMI 

and general ability over a comparable period, from childhood to middle age. 
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In the output above, we can see that after controlling for BMI at age 11 ‘general ability’ is significant 

in the comparison of obese versus normal/healthy BMI, but not in the overweight versus 

normal/healthy BMI comparison. A 1 unit decrease in ‘general ability’ test score is associated with a 

.017 increase in the relative log odds of being obese versus normal/healthy BMI at age 42. Lower 

parental social class, compared to professional and managerial is also important. In addition, as in 

the previous model, males are more likely than females to be either overweight or obese than to 

have a normal/healthy BMI. 

 

Exploring predictors' influence and predicted probabilities on the outcome 

Testing the influence of a categorical variable 

The above results suggest that there are differences in the association of family background 

(education and social class) with obesity and being overweight compared to normal/healthy BMI. 

We can test these formally, by examining the overall effect of mother’s education using the test 

command. 

 

We can see that there is no significant difference between the association of when the participant’s 

mother left education and BMI. 

 

We can also test the overall influence of fathers social class using the ‘test’ command. 
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Here we see the overall influence of father’s social class on BMI category is statistically significant 

(chi-square = 15.79, p<0.05). (NB the commands 1,4,7 and 10 are constrained as they are the 

baseline reference category, i.e. normal/healthy weight). 

 

Testing predicted probabilities of our explanatory variable of interest on our outcome variable 

Focusing on our predictor of interest ‘general ability’, we can use predicted probabilities to help 

understand the relationship between ‘general ability’ and obesity, overweight and normal/healthy 

BMI in the model. In this example we want to calculate the predicted probability of the three BMI 

categories for a given score on the ‘general ability’ test. Predicted probabilities can be calculated 

using the ‘margins’ command. We create the predicted probabilities for values of the ‘general 

ability’ test (n920 which ranges from 0 to 79) from 10 to 80 in increments of 10. The values in the 

table are the average predicted probabilities calculated using the sample values of other predictor 

variables. The example below shows the predicted probability for healthy BMI given the ‘general 

ability’ test score. 
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The first bit of the output tells us which row is associated with which ‘general ability’ test score. Row 

1 relates to a test score of 10, while row 8 equal to a test score of 80. As the test score at age 11 

increases, the probability of a healthy BMI at age 42 being a 1 is increasing from a probability of 

0.421 to 0.526. 

 

Plotting the predicted probabilities 

We can use the ‘marginsplot’ command to create a graph of the predicted probabilities and their 

confidence intervals for each of the BMI categories. We can also combine those graphs using the 

command ‘graph combine’. This last command has the option ‘ycommon’ which we will use to 

ensure the combined graphs have the same y axis.  



10 
 

 
 

The predicted probability of a normal weight (top left graph), overweight (top right graph) or obesity 

(bottom left graph) at age 42 is on the Y axis and the ‘general ability’ test score at age 11 is on the X 

axis. The fitted line increases from left to right, is flat and decreases from left to right for normal 

weight, overweight and obesity respectively as general ability scores increase. 

 

Regression diagnostics 

When modelling a categorical outcome variable, unlike in linear regression there are no typically 

agreed statistical tests that can be used in the diagnostic process. However, you can find out more 

from the following sources: 

Menard, S. (2010). Logistic regression: From introductory to advanced concepts and applications. 

Thousand Oaks, CA: SAGE. 

Hilbe, J.M. (2009). Logistic regression models. Boca Raton, FL: Chapman & Hall/CRC. 

Hosmer, D.W. & Lemeshow, S. (2000). Applied logistic regression (2nd edition). New York, NY: Wiley. 
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If the purpose of the analysis is to investigate repeated measures over time for example BMI at a 

number of different time points, the analysis should account for the clustered nature of the data, i.e. 

allow that measurements within individuals be correlated. Therefore, general linear, logistic and 

multinomial regression models may not be the most appropriate methods when analysing this type 

of longitudinal data. We will be adding new sections soon that will illustrate other methods that can 

be applied when analysing repeated measures data. 


