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Methods of analysis of data from longitudinal studies allow us to make use of their rich data 

and to explore the temporal relationships between measures collected across different life 

stages. Regression analysis is an important and widely-used technique for exploring the 

relationship between an outcome (e.g. later-life health) and possible explanatory variables 

(e.g. early-life circumstances). We can gain important insights in social science, biomedical 

and health research by studying a range of factors throughout the life course, including 

physical and mental health, and socioeconomic and behavioural factors 

In this module you will learn about: 

• The advantages of longitudinal data over cross-sectional data analysis 

• How to explore a longitudinal dataset and prepare it for analysis 

• How to apply general linear, logistic and multinomial regression techniques 

Challenge level: advanced 

Key concepts: 

• Answering research questions with a longitudinal dimension 

• Preparing data for longitudinal data analysis 

• Examining associations between outcomes and potential explanatory variables 

• Adapting analyses for different types of outcome variable 

• Updating and comparing statistical models 

Suggested citation: Moulton, V., O’Neill, D., Park, A. & Ploubidis, G.B. (2020). Regression 

analysis for longitudinal data. CLOSER Learning Hub, London, UK: CLOSER 
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1 Introduction and overview 

This section introduces some of the important fundamentals of analysing data from longitudinal 

studies and describes how regression techniques can be used to explore variables relating to 

different points in an individual’s life course. 

 

1.1 Analysing data from longitudinal studies 

The utility of longitudinal studies and the differences between longitudinal and cross-

sectional designs are described more fully in the Learning Hub’s Introduction to Longitudinal 

Studies. There are data analysis methods that allow us to make use of the rich data collected 

by longitudinal studies and to explore the temporal relationships between measures 

collected across different life stages. Each of these is suited to the analysis of different types 

and combinations of variables. Some variables are continuous (e.g. age) and others are 

categorical (e.g. a list of occupations). We call categorical variables with two levels 

‘dichotomous’ (e.g. deceased or living) and, where they are coded as 0 or 1, we can also call 

them ‘binary’. This guide will teach you about different analytic approaches to exploring how 

certain types of outcomes are associated with potential explanatory factors. 

Dissimilar outcomes can occur even among people who share the same characteristics. The 

term ‘heterogeneity’ is often used to refer to differences like these. Longitudinal data can 

help control for such differences by including a wide range of explanatory variables across 

the life course in statistical models. The problem of ‘omitted variable bias’ is also improved 

by using longitudinal data, but always remains, as there are connections between the 

outcome and explanatory variables that have not or could not be included as they are 

unmeasurable. 

https://learning.closer.ac.uk/introduction/types-of-longitudinal-research/
https://learning.closer.ac.uk/introduction/types-of-longitudinal-research/
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We will use an extract from the National Child Development Study (NCDS) CLOSER Training 

Dataset to illustrate some of the different methods that can be used in analysing longitudinal 

data. The NCDS is a cohort study of people born in England, Scotland and Wales during a 

single week of 1958. In the NCDS, detailed information has been collected on participants 

from childhood, through adolescence into early adulthood and later life, allowing us to look 

at different outcomes and potential explanatory variables.  

Measurements that have been collected over time include assessments of physical health 

(e.g. Body Mass Index (BMI) measured at ages 7, 11, 16, 23, 33, 42 and 50), as well as a series of 

mental health (e.g. Malaise inventory), socio-economic position, and behavioural factors (e.g. 

smoking), measured at ages 23, 33, 42, and 50. These measures are examples of the variety of 

data available in the NCDS and other longitudinal studies. 

 

1.2 Overview of this guide 

In the following sections, we will present a variety of longitudinal data techniques you can 

apply to longitudinal data and repeated measures. First, we will explore and prepare the 

dataset before demonstrating how to apply general linear, logistic and multinomial 

regression approaches which are commonly used in the analysis of longitudinal study data. In 

future updates to this module, we will also illustrate how to transfer data to a format suitable 

for repeated measures analysis. We will also be adding guidance on techniques for analysing 

such repeated measures data, including multilevel regression, fixed effects, and latent growth 

models. 

We will guide you through these methods as performed in the STATA statistical software 

package, and we will provide documented syntax to explain the steps involved. Guidance for 

other statistical software packages is forthcoming. 
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2 Getting started and exploring the 

data 

Longitudinal data analysis can be used to explore how characteristics and experiences from 

early life can influence later outcomes, while taking account of other childhood factors. In this 

module, we will use an extract of data from the NCDS CLOSER Training Dataset (CTD) to 

examine the relationship between intelligence test scores at the age of 11 years and BMI at age 

42 years. This section will provide you with guidance on accessing relevant data, undertaking 

exploratory data analysis and preparing the data for the more advanced statistical modelling 

covered in subsequent sections. 

2.1 Background 

Individuals who gain lower scores on tests of intelligence in childhood or adolescence are more 

likely to report poorer health outcomes in middle to later life. Studies have shown, for 

example, that lower intelligence is related to obesity, high blood pressure, coronary heart 

disease, symptoms of psychological distress, and diagnosis of depression. Hypotheses put 

forward to explain these associations include the possibility that childhood measures of 

intelligence are (i) predictive of advantageous social circumstances in later life, (ii) associated 

with general bodily ‘system integrity’ (i.e. scoring well on cognitive ability tests might be a 

marker for the efficient functioning of other complex systems in the body) or (iii) a proxy for 

stress management skills and the acquisition of behaviours conducive to health (i.e. not 

smoking, physical activity and prudent diet). The latter has been suggested as an explanation 

of the association between body-mass index (BMI) and intelligence, where higher IQ scoring 

individuals interpret and respond to health advice in more positive ways.  

Consequently, in this modules, we will use data from the CTD and apply a series of different 

analytic techniques to explore the relationship between childhood intelligence and adult BMI. 
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2.2 Main variables of interest 

Our outcome variable is body mass index (BMI) in middle-age. The CTD includes a BMI variable 

based on self-reported measures of height and weight at age 42. BMI is calculated in metric 

units, and is based on weight (kg) divided by the square of height (m2). 

2.2.1 Potential explanatory variable 

Our childhood explanatory variable, i.e. our predictor of interest, is ‘general ability’. At age 11, the 

NCDS cohort were given a general ability test, which required the children participating in the study 

to recognise patterns in either words or pictures and correctly identify the next word/picture in a 

sequence. Their total score on this task represents their ‘general ability’ at that age, and this total 

score can range between 0 and 80. This variable is also available in the CTD. 

 

2.3 Accessing and preparing the dataset 

2.3.1 Accessing the CTD dataset 

To access the CTD, we must download it from the UK Data Service (UKDS; 

https://discover.ukdataservice.ac.uk/catalogue/?sn=8205&type=Data%20catalogue). We  will  

need to register/login to access the data and then choose the Stata formatted data from the 

download options. This can be completed on the UKDS website. 

 

Figure 1: Screenshot of download options for the CTD 

https://discover.ukdataservice.ac.uk/catalogue/?sn=8205&type=Data%20catalogue


 

Authors: Vanessa Moulton, Dara O’Neill, Alison Park and George B. Ploubidis 

Suggested citation: Moulton, V., O’Neill, D., Park, A. & Ploubidis, G.B. (2020). Regression analysis of  longitudinal data. 

CLOSER Learning Hub, London, UK: CLOSER 

The download is in the format of a zipped (compressed) folder. After unzipping the folder, we 

can open the ‘CLOSER_training_dataset_complete_cases.dta’ file in Stata. 

2.3.2 Accessing the complete Stata syntax 

We have prepared a Stata syntax file (a .do file) to accompany this module. It includes all of the 

commands discussed in the following sections and we recommend you open it up in Stata 

alongside the CTD data.  

Download the syntax file  

2.3.3 Preparing the data for our analyses 

Now we have the data, our first step will be to simplify the dataset by dropping 

the variables not currently relevant to us. This variable selection is done using 

Stata’s ‘keep’ command as shown below (note that in the code snippets below and 

throughout this module, Stata commands are in bold font and the variable names are 

in italics). 

 

For these analyses, we are adopting a complete case analysis approach. That means that in 

preparing the dataset, we are excluding any cases where there are missing data on any of 

the variables of interest. (Missing data can be handled in alternative ways, such as through the 

use of data imputation techniques). To remove the incomplete cases, we first want to ensure 

that all of the variables use the same missing value code (“.”) as illustrated in the Stata code 

snippet below. 

 

https://learning.closer.ac.uk/wp-content/uploads/2018/10/AnalysisModule_STATA_Sections1to5.zip
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We then need to run the following set of commands in Stata to create a temporary variable 

denoting cases with incomplete data (miss1). We can then remove cases with any incomplete 

data using the ‘drop if’ command. 

 

The data are now ready for some initial exploration of the variables of interest. 

 

2.4 What does the dataset contain? 

Now that the dataset is loaded and initial preparation is complete, we can begin exploring the 

data. 

2.4.1 Looking at the contents of the dataset 

By running the Stata command ‘describe’, we will get a summary of the dataset, including the 

number of observations and a table of the variable names and labels. 
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There are 4,497 observations and 8 variables. The ncdsid variable comprises unique identifier 

codes for each study participant. Other variables in the dataset include the study participant’s 

family background, whether their mother and father left education at the minimum age or not 

(n016nmed, n716dade) and their father’s social class (n1171). n622 is the sex of the study 

participant, while early life factors include their ‘general ability’ (n920) and body-mass index at 

age 11 (bmi11) and our outcome variable body-mass index at age 42 (bmi42). Note that ‘CM’ in 

some of the variable labels stands for ‘cohort member’, i.e. the participants in the study. 

2.4.2 Looking at the contents of the variables 

We can use the ‘summarize’ command to learn more about the variables we will employ in our 

analyses. 

 

As you can see from the output table above, there are no missing data; each variable has 4,497 

observations. Although survey datasets will usually have at least some missing data, we have 

already removed any study participants with missing data for the purposes of our analyses. As 

indicated by the minimum and maximum values in the output table, the dataset has 3 continuous 

variables (bmi42, n920 and bmi11), 3 dichotomous variables (n622, n016nmed, and n716dade), and 

1 categorical variable (n1171). 
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2.5 Examining the predictor and outcome variables 

We can also use the ‘summarize’ command to get even more detailed information on our two 

main variables of interest – our outcome, BMI at age 42 (bmi42), and our predictor variable, 

‘general ability’ at age 11 (n920). You should note that ‘summarize’, as well as other Stata 

commands, can often be abbreviated to keep your command syntax concise. So instead of 

typing out the full ‘summarize’ command, we can instead use ‘sum’, which Stata will interpret 

in the exact same way. Stata commands also often allow us to specify additional options to 

customise the output we get when we run the command. If we use the ‘detail’ option with 

the ‘sum’ command for example, the Stata output will also include percentiles, measures of 

central tendency and variance. 
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From the output, we can see that BMI at age 42 ranges from 14.74 to 51.72, with a mean of 

25.86 and a median of 25.22 (the 50th percentile). General ability at age 11 ranges from 0 to 79, 

with a mean of 46.64 and a median of 48. The distribution of BMI at age 42 is not symmetrical 

(skewness = 1.13) and is heavy on the tails of the distribution (kurtosis = 5.24) which we can 

examine graphically using the ‘qnorm’ and ‘histogram’ commands, as shown in the plots 

below. 
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We will examine these in more detail when we investigate the regression diagnostic at the end 

of the general linear regression example. 

2.6 Preparing the data for modelling 

First, we are going to examine the sex (n622), a dichotomous variable, to look at how this is 

coded. The ‘codebook’ command is particularly useful for looking at categorical variables. 
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The n622 variable is coded 1=Male and 2=Female. There are 2,141 males in our data and 2,356 

females. 

For our regression analysis, we will recode the data to create a new binary variable (which we 

will label ‘sex’ and in which we will recode the values as 0=Male and 1=Female). Such 

binary variables are often known as dummy variables. Although the coefficients would work 

out the same if the variable was coded as 1/2 or 0/1, the intercept (labelled as “_cons” in the 

output) would be less intuitive. In our regression analysis, we will use males as the reference 

group. 

 

The second variable we are going to look at is father’s social class (n1171). 
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The n1171 variable has 7 categories ranging from 1=‘Social class I’ to 7=‘Social class V’. Some 

of the categories have low numbers of observations. For example, ‘SC IV non-manual’ has 

only 75 observations, so we will combine some of the categories to increase the number of 

observations they capture by creating a new variable with fewer categories using 

the ‘gen’ and ‘replace’ commands. 

 

We have now created a new variable n1171_2 which collapses social class I and II from n1171 into 

a combined I and II professional and managerial category which we will use as our reference 

group. These two categories are often combined into a single high social class grouping. The 

second change we have made is combining the ‘SC IV non-manual’ category with only 75 

observations with the ‘SC IV manual’ category to create a single IV category with 711 
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observations. With only 75 observations it may increase the chance that we may find no 

association with BMI at age 42 in the non-manual unskilled category (compared to the higher 

social classes) as a consequence of the low sample size, even if there actually is a relationship. We 

can examine the difference between the original and recoded variable using the ‘tab’ command. 

 

As you can see from the output table above, social class n1171_2 now has 5 categories. We can 

now proceed to the next steps in our analysis, where we will undertake statistical modelling to 

explore research questions with the data. 
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3 General linear regression 

This section introduces a method, known as general linear regression, that can be used to 

examine how an outcome that has been measured on a continuous scale is associated with 

potentially explanatory variables. We offer a step-by-step illustration of how we can use this 

important statistical analysis approach to explore such associations in longitudinal data. 

 

3.1 What is general linear regression? 

General linear regression enables us to evaluate the association between a 

continuous outcome variable and one or more continuous or categorical predictor variables. 

The model we fit is linear, which means we summarise the data with a straight line that best 

describes the data by minimising the distance between the actual data and the predictions of 

the regression line. Multiple regression allows us to determine the overall fit of the model and 

the relative contribution of each of the predictors to the variance explained. With our 

longitudinal data, we can try and explain a later life outcome for a particular person by 

whatever model we fit to the data using information about that person from earlier in their life. 

 

3.2 Example research question: Is childhood intelligence related to 

body-mass index (BMI) in middle age? 

In this regression, the outcome variable bmi42 is a continuous variable that includes all values 

of BMI at age 42. In the first model we will analyse, there is only one predictor variable ‘general 

ability’ at age 11 (n920), which is also a continuous variable. 

It is always important to explore the data before running statistical models. If you have not yet 

done so, please first look at exploring the data to learn how you can examine the data. You will 

also need to have first derived a few of the explanatory variables, see main variables of 

interest, before proceeding with the regression modelling. In this work, we will adopt a 

https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/background/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/main-variables-of-interest/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/main-variables-of-interest/
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significance threshold of p=.05, meaning that we will infer statistical significance for p-values 

that fall below this cutoff. 

 

3.3 Running the regression 

In Stata, linear regressions can be run with the ‘regress’ command. This can be abbreviated 

to ‘reg’ in our code to keep our commands concise. To run the ‘reg’ command appropriately, 

we must specify the outcome variable immediately after the ‘reg’ command in our syntax, 

followed by the predictor variable(s). This is the order used in the code snippet below: 

 

Looking at the output table above, we can see that the p-value of the F-test (=61.29, p<.001 is 

below our adopted significance threshold of which means we can say that the model 

statistically significant. r-squared value approximately variance bmi at age accounted for by 

model. as there only one predictor this aria-describedby="tt" class="glossaryLink" data-

cmtooltip="General ability is a term used to describe cognitive ability, and is sometimes used 

as a proxy for intelligent quotient (IQ) scores.">general ability’ at age 11 explains only 1.4% of 

the variance of BMI at age 42. The coefficient for n920 is -.0344106 or approximately -.03, 

meaning that for 1 unit increase in general ability, we would expect a .03 decrease in BMI at age 

42. Put more simply, a study participant with a general ability score of 60 at age 11 would have 

a 1 unit lower BMI score at age 42 than a study participant with a general ability score of 30 at 

age 11. The intercept (or constant) is 27.47 and this is the predicted value of BMI at age 42 
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when ‘general ability’ equals zero. 

In the next section, we will look at how we can plot our results. 

 

3.4 Plotting the results 

To help visualise our results, we can create a scatterplot of the outcome and the predictor 

variables with the regression line plotted on top. This involves two steps: 

1. After running the regression, we create a variable containing the predicted values 

(which we have named bmi_iq1) using the ‘predict’ command. 

 

2. Then to create the plot, we use the Stata ‘twoway (scatter …)’ graph command, in 

combination with the ‘(lfit …)’ command to overlay the regression line. 
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Running the above commands with our data, the plot we generate has ‘BMI at age 42’ 

on the Y axis and ‘general ability at age 11’ on the X axis. The fitted regression line 

slopes from the left of the plot (where the intercept for ‘BMI at age 42’ is 27.5) to the 

right (where a ‘general ability’ score of 80 equals a ‘BMI at age 42’ of 24.7). However, the 

slope is fairly flat, which is to be expected given the small regression coefficient (-.03) 

we obtained in the previous step when we ran the ‘reg’ command. 

What we have run here is often called a simple regression, as it contains only 

one predictor variable. We may get a more informative insight if we extended our model 

to consider other variables that may influence the association between our predictor 

and outcome variables, and that is exactly what we will do in the next section. 

  

https://learning.closer.ac.uk/analysis/general-linear-regression/running-the-regression/
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3.5 Updating the regression model 

3.5.1 Including potential confounding variables 

We are now going to extend our model to consider variables that may influence or confound 

the association between our predictor and outcome variables. These new variables being 

considered are: sex, parents’ education and family social class. 

The sex variable has already been recoded to be binary (see the Preparing the data for 

modelling section) and in this regression analysis we are using the category ‘male’ as 

the reference group. 

In addition, we are going to include a few family background factors in the model. These 

include two parental education measures that denote whether the participant’s mother 

(n016nmed) and father (n716dade) left school at the minimum age or not; these are also 

binary variables. For both of these variables, we are using the ‘left school at the minimum age’ 

as the reference group. 

The final potential confounder we are including is the social class of the study participant’s 

father (n1171_2). This is a categorical variable with 5 values. In Stata you can automatically 

create dummy variable(s) for each of the values in a multi-category variable by appending the 

prefix of ‘i.’ to the variable name, e.g. i.n1171_2. In this instance, it means that the model will 

compare each of ‘III Skilled non-manual’, ‘III Skilled manual’, ‘IV Partly skilled’ and ‘V unskilled’ 

against the ‘I/II Prof & Managerial’ category. Stata will use ‘I/II Prof & Managerial’ as the 

reference category simply because it is the first category in the variable. 

https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/preparing-the-data-for-modelling/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/preparing-the-data-for-modelling/
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From the output table above, we can see that including the study participant’s sex and family 

background factors have not markedly changed the model. A small proportion, 4%, of the 

variance of BMI at age 42 is accounted for by family background, general ability at age 11 and 

the sex of the study participant. The participant’s general ability is still significant; for a 1 unit 

increase in general ability, we can expect a .03 decrease in BMI at age 42. The average BMI for 

females at age 42 is 1.14 lower than males, taking account of general ability at age 11. If the 

participant’s mother did not leave school at the minimum age, on average the participant’s 

BMI at age 42 was .47 lower than a participant whose mother left school. The father staying on 

at school was not significant, as this was explained by the father’s social class which was also 

included in the model. Social class and education are highly correlated; an individual’s 

educational attainment will in part reflect later occupational status which determines social 

class (You can explore this yourself as the syntax for the model above with social class 

excluded has been provided in the Stata .do file that accompanies this module). Compared to a 

participant whose father was in the highest social classes (I and II), having a father in the skilled 

and partly skilled manual social classes increased a participant’s BMI by .63 and .57 

respectively (if all other factors remained equal). If the participant’s father was instead in the 

unskilled class, the increase in BMI was on average higher by 1. 

https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/accessing-and-preparing-the-dataset/
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3.5.2 Including a childhood measure of BMI 

In our final model we add bmi11, the BMI of the study participants when they were aged 11. By 

adding BMI at age 11 we adjust for earlier measures of BMI, thereby focusing on the change in 

BMI from age 11 to age 42. This allows us to measure BMI and general ability over a comparable 

duration from the age of 11 to 42 years. 

 

The R-squared value in the output table above tells us that a quarter (25.8%) of the variance of 

BMI at age 42 is accounted for when we include BMI at age 11, as well as family 

background, general ability at age 11 and the sex of the participant, in the model. We can infer 

from the fact that mother’s education is no longer a significant predictor in this updated model 

that childhood BMI explains its significance in the earlier model. However, all other factors that 

were significant in the earlier less-adjusted model remain significant in this updated model, 

including our ‘general ability’ predictor variable. It may be that the influence of mother’s 

education on the participant’s midlife BMI, for example, reflects the family’s early eating 

habits, physical activity and health behaviours, which would be more influential in a child’s 

early life and therefore be reflected in their childhood BMI. For a 1 unit increase in general 
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ability, we would expect a .02 decrease in BMI at age 42. In other words, a participant with 

a general ability score of 60 at age 11 would have a .63 lower BMI score at age 42 than a study 

participant with a general ability score of 30 at age 11, after controlling for BMI at age 11 and 

other factors. 

However, we have still only explained a quarter (25.8%) of the variance in BMI at age 42. There 

are other factors, not included in this analysis which may play a role in that unexplained 

variance as they are known to be associated with BMI, such as physical activity, diet, sleep 

duration, socio-economic factors in later life, parent’s BMI and genetic factors. 

 

3.6 Regression diagnostics 

We have conducted this analysis without checking whether the data we have been using have 

met the assumptions underlying an ordinary least squares (OLS) linear regression. Three main 

assumptions we will however now briefly explore are normality, homogeneity of variance 

(homoscedasticity) and independence. Normality of residuals is only required for valid 

hypothesis testing, where we need to ensure the p-values are valid; it is not required to obtain 

unbiased estimates of the regression coefficients. OLS requires that the residuals are 

identically and independently distributed, i.e. the observed error (the residual) is random. 

 

3.6.1 Normality 

First, we will formally test the normality of residuals to identify if we can use our analysis for 

valid hypothesis testing. After running our final regression analysis, we can use 

the ‘predict’ command with the ‘resid’ option to calculate the residuals. We can store these 

residual values as a variable, which in this case we will call bmi_iq2, and we can then use this 

variable to then check the residuals’ normality. 
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We can plot the residuals against a normal distribution, using either the ‘pnorm’ (which is 

sensitive to non-normality in the middle range of data) or ‘qnorm’ (which is sensitive to non-

normality near the tails) commands. We are going to look at the ‘qnorm’ method, as we 

suspect that BMI is non-normal at the tails of the distribution. Previous research indicates that 

BMI is not symmetrical but is always skewed to the right, toward a higher ratio of weight (body 

mass) to height. 

 

In the above output, the ‘qnorm’ command has plotted quintiles of the residuals of BMI at age 

42 (the thicker dotted line) against the quintiles of a normal distribution (the thin diagonal 

line). If the two lines were exactly the same, the residuals of BMI at age 42 would be normally 

distributed. The plot shows that the residuals of BMI at age 42 deviate from the norm, 

particularly at the upper tail and are therefore not normally distributed. 

To numerically test for normality, we can use the ‘swilk’ test. This performs the Shapiro-Wilk 

test which tests whether the distribution is normal. 
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In the ‘swilk’ output, we can see that the test’s p-value is <.001 and therefore we can reject the 

null hypothesis that residuals in model are normally distributed. our general linear regression 

is not appropriate for valid testing. models categorising aria-describedby="tt" 

class="glossaryLink" data-cmtooltip="In analysis, the dependent variable is the variable you 

expect to change in response to different values of your independent (or predictor) variables. 

For example, a students’ test results may be (partially) explained by the number of hours spent 

on revision. In this case, the dependent variable is students’ test score, which you expect to be 

different according to the amount of time spent revising.">outcome variable BMI at age 42, 

into the top and or bottom tails may better reflect the distribution of the data. For example, 

the top of the distribution tail represents higher BMI, so transforming our continuous 

variable into a dichotomous variable (such as ‘obese’ versus ‘not obese’) would capture this 

feature of the distribution. Likewise, if we were interested in lower BMI, by transforming the 

bottom tail of the distribution into an ‘underweight’ versus ‘not underweight’ dichotomous 

variable, we would capture the opposite end of the distribution. 

 

3.6.1 Homogeneity of variance (homoscedasticity of residuals) 

A commonly used graphical method for evaluating the model fit is to plot the residuals against 

the predicted values. If the model is well-fitted, there should be no pattern evident in the plot. 

We can create such a plot by using the ‘rvfplot’ command. 
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We can see the pattern of the data points is getting wider towards the right end which is an 

indication that the model is not well fitted. This implies that our linear regression model would 

be unable to accurately predict BMI at age 42 consistently across both low and high values of 

BMI. 

 

3.6.1 Independence 

The assumption of independence states that the errors associated with one observation are 

not correlated with the errors of any other observation. This assumption is often violated if 

measures of the same variable such as the BMI of an individual are collected over time. 

Measurements nearer in time are especially likely to be more highly correlated. However, in 

this example we note BMI of an individual may be very different at age 11 than at age 42, some 

31 years later. 



Authors: Vanessa Moulton, Dara O’Neill, Alison Park and George B. Ploubidis 

Suggested citation: Moulton, V., O’Neill, D., Park, A. & Ploubidis, G.B. (2020). Regression analysis of 

longitudinal data. CLOSER Learning Hub, London, UK: CLOSER 

4 Logistic regression 

This section discusses a method that can be used to analyse the association between a 

dichotomous (two-category) outcome measure and potentially explanatory variables. This 

method is a widely used approach and the following guide provides a detailed illustration of 

how we can use this logistic regression method to answer research questions with 

longitudinal data. 

 

4.1 What is logistic regression? 

Logistic regression is an analysis method that allows us to test the association between 

an outcome variable that is dichotomous (categorical with two levels) and predictor 

variables that are either continuous or categorical. We can use logistic regression to predict 

which of two categories a person is likely to belong to given certain other information. With 

our longitudinal data, we can use logistic regression to test the probability of an event 

occurring in later life or not, based on events in early life. 

 

4.2 Example research question: Is lower intelligence in childhood 

related to obesity in middle age? 

In this regression, the outcome variable will be a dichotomous variable, ‘not obese’ or 

‘obese’ at age 42, as explained below. 

All the predictor variables are the same as those used in the general linear and multinomial 

logistic regression sections. It is always important to explore the data before running 

statistical models, so if you have not yet done so, please first look at exploring the data. You 

will also need to construct a few of the explanatory variables before creating your regression 

model, see main variables of interest. 

https://learning.closer.ac.uk/analysis/general-linear-regression/what-is-general-linear-regression/
https://learning.closer.ac.uk/analysis/multinomial-logistic-regression/what-is-multinomial-logistic-regression/
https://learning.closer.ac.uk/analysis/multinomial-logistic-regression/what-is-multinomial-logistic-regression/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/background/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/main-variables-of-interest/
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4.3 Preparing the outcome variable: Obese or not at age 42 

For this regression, we are going to derive an outcome variable, obese42, that is 

dichotomous (comprised of two groups): ‘not obese’ and ‘obese’. We do this derivation 

using the variable bmi42, a continuous variable that we also use in the general linear 

regression section. The definition of obesity that we are using as the basis of our 

categorisation is from the World Health Organisation (WHO) standards 

(http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm). A BMI of 30 and over was 

defined as obese; a BMI below 30 as not obese. Creating the obese42 variable requires a 

series of commands as illustrated below. 

 

We can then use the ‘tabulate’ command (abbreviated to ‘tab’) to get the frequency of the 

new variable. 

 

The output shows that, at age 42, approximately 1 in 6 (15.2%) of the sample are obese. 

 

https://learning.closer.ac.uk/analysis/general-linear-regression/what-is-general-linear-regression/
https://learning.closer.ac.uk/analysis/general-linear-regression/what-is-general-linear-regression/
http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm
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4.4 Running the regression 

In the first logistic regression we are going to run, there will only be one predictor variable, 

‘general ability’ at age 11 (n920), which is a continuous variable. We are going to use 

the ‘logit’ command which will provide us with the untransformed beta coefficients (in log-

odd units) and their confidence intervals. These are often difficult to interpret, so are 

sometimes converted into odds ratios. If we wanted to get the odds ratios we could use the 

command ‘logistic’ instead of ‘logit’ or add the ‘or’ option (‘, or’) to the ‘logit’ example 

below. The odds ratio is the odds of success for one group divided by the odds of success for 

the other group, where in this example ‘success’ is the odds of being obese or not obese. 

When running a logistic regression in Stata, the dependent variable should be specified 

immediately after the ‘logit’ command, followed by the predictor variable(s). 

 

The output above shows that the log likelihood of the fitted model is -1892.56. The number 

itself does not have much meaning, but when used in comparisons with other models, it can 

help to identify if the reduced model fits significantly better than the full model (which we 

will come back to later when we include other predictors in the model). The overall model is 

statistically significant (chi-square = 42.48, p=<.001 which means the model including aria-

describedby="tt" class="glossaryLink" data-cmtooltip="General ability is a term used to 

describe cognitive ability, and is sometimes used as a proxy for intelligent quotient (IQ) 

scores.">general ability at age 11’ fits the data statistically significantly better than the 

model without it, i.e. a model with no predictors. The ‘pseudo R-squared’ gives a very 

general idea of the proportion of variance accounted for by the model; however it is not a 



Authors: Vanessa Moulton, Dara O’Neill, Alison Park and George B. Ploubidis 

Suggested citation: Moulton, V., O’Neill, D., Park, A. & Ploubidis, G.B. (2020). Regression analysis of 

longitudinal data. CLOSER Learning Hub, London, UK: CLOSER 

reliable statistic, hence its name ‘pseudo’. 

In the table, we can see the coefficient, the standard error, the z statistic, associated p-

values and the 95% confidence intervals of the coefficients. ‘General ability at age 11’ is 

statistically significant (Z=-6.52, p<.001 for every unit decrease in aria-describedby="tt" 

class="glossaryLink" data-cmtooltip="General ability is a term used to describe cognitive 

ability, and is sometimes used as a proxy for intelligent quotient (IQ) scores.">general 

ability, the log odds of being obese (compared to not being obese) increases by 0.018. 

 

4.5 Updating the regression model 

4.5.1 Including potential confounding variables 

In the next model (M2), we will add a number of possible confounding variables to the 

regression: sex, parents’ education and family social class. First we will add sex, where 

0=Male and 1=Female. As mentioned previously, this type of binary variable is also known as 

a dummy variable. In our regression analysis, the reference group is ‘male’. We are also 

going to include a few family background factors in the model: whether the cohort’s mother 

(n016nmed) and father (n716dade) left school at the minimum age or not, and the social 

class of the study participant’s father (n1171_2). Social class n1171_2 has 5 categories: ‘I/II 

Prof & Managerial’, ‘III Skilled non-manual’, ‘III Skilled manual’, ‘IV Partly skilled’ and ‘V 

unskilled’. In Stata we can use the prefix of ‘i.’ in the variable name i.n1171_2 which will 

automatically create dummy variable(s). The first category ‘I/II Prof & Managerial’ will be 

treated as the reference category for that variable. 
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‘General ability’ is still significant after controlling for the other predictor variables. For every 

1 unit decrease in general ability, the log odds of being obese (compared to not being obese) 

increases by 0.013. In addition, if the participant’s father was in the manual or unskilled 

social classes, by age 42 the participant was more likely to be obese, compared to 

participants whose fathers were professional or managerial. In this model, the coefficients 

for sex and mother’s and father’s education were not significant, that is to say, we have not 

found that the log odds of being obese or not obese at age 42 differ between men and 

women, or according to parental educational level. 

 

4.5.2 Including a childhood measure of BMI 

For our final model (M3), we will also add bmi11, the BMI of the participants when they were 

aged 11. Doing so means that we will be adjusting for participant’s baseline BMI, and that 

will allow us to focus on the subsequent change in BMI from age 11 to age 42, and therefore 

to measure both BMI and general ability over a comparable period, from childhood to 
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middle age. 

 

The results above show that for a 1 unit increase in BMI at age 11, the log odds of being 

obese at age 42 increases by 0.353. After controlling for BMI at age 11 and all the other 

predictors, being female compared to male decreases the log odds of obesity by 0.185. In 

addition, having a father in the lower social classes compared to one with a 

professional/managerial occupation increases the odds of obesity at age 42. 

 

4.6 Exploring predictors' influence and predicted probabilities on 

the outcome 

4.6.1 Testing the influence of a specific categorical variable 

We can examine the overall effect of social class using the ‘test’ command. To specify which 

levels of the categorical n1171_2 social class variable we wish to compare to the reference 

category (‘I/II Prof & Managerial’), we include a prefix denoting the numeric code for each 

other category (e.g. ‘III Skilled non-manual’ is the second category so this is denoted 

as 2.n1171_2). 
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From the output of the ‘test’ command above, we can see that the overall effect of social 

class is statistically significant (p<.05> 

We can also examine the differences in the coefficients for each of the different social 

classes compared to the reference category. For instance, we could again use the ‘test’ 

command, as shown in the example below, to evaluate whether the coefficient for social 

class ‘III Skilled non-manual’ is equivalent to the coefficient for social class ‘III Skilled 

manual’. 

 

The output above shows that the p-value is under <.05 (our threshold for inferring statistical 

significance) and we can consequently say the coefficients for these two categories are 

different. 

 

4.6.2 Testing predicted probabilities of our explanatory variable of interest on 

our outcome variable 

Focusing on our predictor of interest ‘general ability’, we can use predicted probabilities to 

help understand the relationship between general ability and obesity in the model. In this 
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example we want to calculate the predicted probability of obesity for a given score on 

the general ability test. Predicted probabilities can be calculated using 

the ‘margins’ command. We can use this command to create the predicted probabilities for 

values of the general ability test (n920 which ranges from 0 to 79) from 10 to 80 in 

increments of 10. The ‘margins’ command uses the sample values of other predictor 

variables to calculate the average predicted probabilities on our predictor of interest. We 

can also use the ‘vsquish’ option in the command to help tidy up the output as this removes 

blank lines in output tables. 

 

The first part of the output above tells us which row is associated with which general 

ability test score. Row 1 corresponds to a test score of 10, while row 8 is equal to a test score 

of 80. We can interpret from the table that as the test score at age 11 increases, the 

probability of obesity at age 42 is decreasing from 21.8% to 10.2%. 
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4.6.3 Plotting the predicted probabilities 

We can present the results as a graph by using the ‘marginsplot’ command, which plots 

both the predicted probabilities and their confidence intervals. 

 

In the output plot above, the ‘predicted probability of obesity at age 42’ is on the Y axis and 

the ‘general ability test score at age 11’ is on the X axis. The fitted line decreases from left to 

right, indicating that as general ability scores increase, the probability of obesity decreases. 

The predicted probability of obesity at age 42 would be 17.8% with a test score of 30 at age 

11, compared to 12.9% with a test score of 60. 

 

4.7 Comparing model fit of the logistic regression models 

As we mentioned earlier, the log likelihood of the fitted model is used to compare to other 

models, to identify if the reduced model fits significantly better than the full model. In order 
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to compare models, in Stata we can use the ‘estimates store’ and ‘lrtest’ commands. We 

will re-run the same models we have just completed in the previous logistic 

regression examples. Each model is estimated and stored using the command ‘est 

store’ under an arbitrary name; in this example we are labelling them M0 to M3. You can use 

the ‘quietly’ command in front of the ‘logistic’ command to run the models in the 

background (i.e. Stata stores the output rather than writing it out at the time the command 

is run). It is possible to include code comments or annotations (text that explains the code 

you are running) in the Stata command window by starting the comment line with an 

asterisk (‘*’). 

 

We will then use the ‘lrtest’ command to test whether the log likelihoods for each model are 

significantly different to each other. 

https://learning.closer.ac.uk/analysis/logistic-regression/running-the-regression/
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In the output above, the log-likelihood test for M1 v M0 is the same result as the first 

model we ran in this set of ‘logit’ examples. This is because we are comparing the empty 

model (M0) with M1 which has only one predictor variable: general ability (chi-square = 

42.48, p=<.001 in the second comparison above>M2 v M1), we can see that the addition of 

sex and family background variables to the model marginally improves the fit (chi-square = 

20.79, p=<.01 while adding a single predictor at age in m3 makes notable further 

improvement to the model fit p="<.001)." final test>M0 v M3 compares the original model 

with no explanatory variables and our final model; unsurprisingly given the other results, 

this again shows that adding all the predictors improves the fit over the empty model (chi-

square = 589.41, p=<.001> 

https://learning.closer.ac.uk/analysis/logistic-regression/running-the-regression/
https://learning.closer.ac.uk/analysis/logistic-regression/running-the-regression/


Authors: Vanessa Moulton, Dara O’Neill, Alison Park and George B. Ploubidis 

Suggested citation: Moulton, V., O’Neill, D., Park, A. & Ploubidis, G.B. (2020). Regression analysis of 

longitudinal data. CLOSER Learning Hub, London, UK: CLOSER 

4.8 Regression diagnostics 

When modelling a binary outcome variable, unlike in linear regression there are no typically 

agreed statistical tests that can be used in the diagnostic process. However, you can find out 

more from the following sources: 

• Menard, S. (2010). Logistic regression: From introductory to advanced concepts and 

applications. Thousand Oaks, CA: SAGE. 

• Hilbe, J.M. (2009). Logistic regression models. Boca Raton, FL: Chapman & Hall/CRC. 

• Hosmer, D.W. & Lemeshow, S. (2000). Applied logistic regression (2nd edition). New 

York, NY: Wiley. 
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5 Multinomial logistic regression 

This section provides guidance on a method that can be used to explore the association 

between a multiple-category outcome measure and other potentially explanatory variables. 

Multinomial logistic regression can offer us useful insights when we are working with 

longitudinal data and this section breaks down and discusses each of the key steps involved. 

 

5.1 What is multinomial logistic regression? 

Multinomial regression is an extension of logistic regression that is used when a 

categorical outcome variable has more than two values and predictor variables are 

continuous or categorical. We can use multinomial regression to predict which of two or 

more categories a person is likely to belong to, compared to a baseline (or reference) 

category and given certain other information. With our longitudinal data we can use 

multinomial logistic regression to test the probability of an event occurring (A) in later life 

compared to other potential outcomes (B, C), applying information gathered in earlier life. In 

order to make comparisons, we can use any of the events (A, B or C) as 

the baseline category. 

 

5.2 Example research question: Is childhood intelligence related to 

normal/healthy body-mass index (BMI) compared to being 

overweight or obese in middle age? 

In this regression, we will again explore the links between childhood intelligence and body 

mass index (BMI) at age 42,  but this time we will categorise participants’ BMI score into 

three groups: ‘normal/healthy’, ‘overweight’ and ‘obese’. We are going to treat this variable 

as being nominal and so we will use a method called multinomial logistic regression that is 

appropriate for use with outcome variables with multiple categories. 
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In the next section, we will show you how to create the variable for use in the analysis. 

 

5.3 Preparing the outcome variable: BMI categories 

We will group the categories together based on the World Health Organisation (WHO) 

standards (http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm). Few of the sample 

were underweight (n=54, <1%) so in this example they will be included in the normal or 

healthy category. 

 

Once we have created the variable, we can use the ‘tab’ command to look at the number of 

participants that fall into each BMI category . 

 

Just under half (48%) of our sample were normal or healthy weight, over a third (37%) were 

overweight and 15% were obese. 

All of the predictor variables are the same as those used in the general linear and logistic 

regression sections. It is always important to explore the data before running statistical 

http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm
https://learning.closer.ac.uk/analysis/general-linear-regression/what-is-general-linear-regression/
https://learning.closer.ac.uk/analysis/logistic-regression/what-is-logistic-regression/
https://learning.closer.ac.uk/analysis/logistic-regression/what-is-logistic-regression/
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models. To examine the data, please look at exploring the data. If you have not done so 

already you will also need to construct a few of the explanatory variables before creating 

your regression model, see main variables of interest. 

 

5.4 Running the regression 

In Stata, we use the ‘mlogit’ command to run a multinomial logistic regression. As with 

the logistic regression method, the command produces untransformed beta coefficients (in 

log-odd units) along with their confidence intervals. (These are often difficult to interpret, so 

are sometimes converted into relative risk ratios. If we wanted to get the relative risk ratios 

we could add the ‘rrr’ option (‘, rrr’) to the ‘mlogit’ example below). With 

the ‘mlogit’ command, we also include the option ‘base’ to specify which category is 

the reference group. For our analysis, we will use  ‘normal or healthy’ weight as the 

reference category. 

In the first regression we run, there will only be one predictor variable, ‘general ability at age 

11’ (n920), which is a continuous variable. 

https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/background/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/main-variables-of-interest/
https://learning.closer.ac.uk/analysis/logistic-regression/what-is-logistic-regression/
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The iterations 0 through 3 listed in the top left-hand corner of the output above are the log 

likelihoods at each iteration of the maximum likelihood estimation. Iteration 0 is the log 

likelihood of the model with no predictors. When the difference between successive 

iterations is very small, the model has ‘converged’. The final iteration is the log likelihood of 

the fitted model. The log likelihood of the fitted model is -4499.12. The number itself does 

not have much meaning, but is used to make comparisons across the models and to identify 

if the reduced model fits significantly better than the full model. The overall model is 

statistically significant (chi-square = 55.73, p=<.001 which means the model including aria-

describedby="tt" class="glossaryLink" data-cmtooltip="General ability is a term used to 

describe cognitive ability, and is sometimes used as a proxy for intelligent quotient (IQ) 

scores.">general ability at age 11’ fits the data statistically significantly better than the 

model without it, i.e. a model with no predictors. The ‘pseudo R-squared’ value (Pseudo R2) 

gives a very general idea of the proportion of variance accounted for by the model, but it is 

just an approximation and not very reliable which is why we call it ‘pseudo’. 

In the output above, we also get a tabulation of the coefficient, standard error, the z statistic, 

associated p-values and the 95% confidence intervals of the coefficients. This table is in two 
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parts, labelled with the categories of the outcome variable BMI42_C. In both outputs, 

‘general ability at age 11’ (n920) is statistically significant. A 1 unit decrease in ‘general 

ability’ is associated with a 0.008 decrease in the relative log odds of being overweight 

compared to a normal/healthy weight, and a 0.022 decrease in the relative log odds of being 

obese compared to a normal/healthy weight. 

In the next step, we will extend the model further to explore the influence of 

other variables on this association between general ability and the different categories of 

BMI. 

 

5.5 Updating the regression model 

5.5.1 Including potential confounding variables 

In the next model, we will add a set of possible confounding variables to the regression: sex, 

parents’ education and family social class. First, we will add sex where 0=Male and 

1=Female. As explained in previous sections, this type of binary variable is also known as a 

dummy variable. In our analysis, the reference group will be ‘male’ (as this group is coded as 

0). We are also going to include a few family background factors in the model: whether the 

cohort’s mother (n016nmed) and father (n716dade) left school at the minimum age or not, 

and the social class of the study participant’s father (n1171_2). Social class n1171_2 has 5 

categories: ‘I/II Prof & Managerial’, ‘III Skilled non-manual’, ‘III Skilled manual’, ‘IV Partly 

skilled’ and ‘V unskilled’. With multi-category variables such as this, you can use the prefix 

of ‘i.’ in the variable name i.n1171_2 and Stata will automatically create dummy variable(s) 

for each category. The first category ‘I/II Prof & Managerial’ will be treated as the reference 

category. 
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Interestingly in the output we can see that ‘general ability’ is significant in the ‘obese’ versus 

‘normal/healthy’ BMI comparison, but not in the ‘overweight’ versus ‘normal/healthy’ BMI 

comparison after controlling for all the other predictors. A 1 unit decrease in ‘general ability’ 

test score is associated with a .014 increase in the relative log odds of being obese v 

normal/healthy BMI at age 42. Father’s social class also predicts obesity; it is associated with 

the odds of the study participant being overweight compared to normal/healthy BMI in the 

study participant. Males (compared to females) and participants whose mothers left 
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education at the minimum age were more likely to be overweight or obese compared to 

normal/healthy BMI. 

 

5.5.2 Including a childhood measure of BMI 

For our final model, we are going to include bmi11, the BMI of the participant when they 

were aged 11. Doing so means that we will be adjusting for participant’s baseline BMI, and 

that will allow us to focus on the subsequent change in BMI from age 11 to age 42, and 

therefore to measure both BMI and general ability over a comparable period, from 

childhood to middle age. 
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In the output above, we can see that after controlling for BMI at age 11 ‘general ability’ is 

significant in the comparison of obese versus normal/healthy BMI, but not in the overweight 

versus normal/healthy BMI comparison. A 1 unit decrease in ‘general ability’ test score is 

associated with a .017 increase in the relative log odds of being obese versus normal/healthy 

BMI at age 42. Lower parental social class, compared to professional and managerial is also 

important. In addition, as in the previous model, males are more likely than females to be 



Authors: Vanessa Moulton, Dara O’Neill, Alison Park and George B. Ploubidis 

Suggested citation: Moulton, V., O’Neill, D., Park, A. & Ploubidis, G.B. (2020). Regression analysis of longitudinal 

data. CLOSER Learning Hub, London, UK: CLOSER 

either overweight or obese than to have a normal/healthy BMI. 

 

5.6 Exploring predictors' influence and predicted probabilities on 

the outcome 

5.6.1 Testing the influence of a categorical variable 

The above results suggest that there are differences in the association of family background 

(education and social class) with obesity and being overweight compared to normal/healthy 

BMI. We can test these formally, by examining the overall effect of mother’s education using 

the ‘test’ command. 

 

We can see that there is no significant difference between the association of when the 

participant’s mother left education and the participant’s own BMI in later life. 

We can also test the overall influence of fathers social class using the ‘test’ command. 
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Here we see the overall influence of father’s social class on BMI category is statistically 

significant (chi-square = 15.79, p<0.05). (NB the commands 1,4,7 and 10 are constrained as 

they are the baseline reference category, i.e. normal/healthy weight). 

 

5.6.2 Testing predicted probabilities of our explanatory variable of interest on our 

outcome variable 

Focusing on our predictor of interest ‘general ability’, we can use predicted probabilities to 

help understand the relationship between ‘general ability’ and obesity, overweight and 

normal/healthy BMI in the model. In this example we want to calculate the predicted 

probability of the three BMI categories for a given score on the ‘general ability’ test. 

Predicted probabilities can be calculated using the ‘margins’ command. We create the 

predicted probabilities for values of the ‘general ability’ test (n920 which ranges from 0 to 

79) from 10 to 80 in increments of 10. The values in the table are the average predicted 

probabilities calculated using the sample values of other predictor variables. The example 

below shows the predicted probability for healthy BMI given the ‘general ability’ test score. 
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The first part of the output tells us which row is associated with which ‘general ability’ test 

score. Row 1 (Expression = 1._at) relates to a test score of 10, while row 8 equal to a test score 

of 80. As the test score at age 11 increases, the probability of a healthy BMI at age 42 being a 

1 is increasing from a probability of 0.421 to 0.526. 

 

5.6.3 Plotting the predicted probabilities 

We can use the ‘marginsplot’ command to create a graph of the predicted probabilities and 

their confidence intervals for each of the BMI categories. We can also combine those graphs 

using the command ‘graph combine’. This last command has the option ‘ycommon’ which 

we will use to ensure the combined graphs have the same y axis. 
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The predicted probability of a normal weight (top left graph), overweight (top right graph) or 

obesity (bottom left graph) at age 42 is on the Y axis and the ‘general ability’ test score at age 

11 is on the X axis. The fitted line increases from left to right, is flat and decreases from left to 

right for normal weight, overweight and obesity respectively as general ability scores 

increase. 
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5.7 Regression diagnostics 

When modelling a categorical outcome variable, unlike in linear regression there are no 

typically agreed statistical tests that can be used in the diagnostic process. However, you 

can find out more from the following sources: 

• Menard, S. (2010). Logistic regression: From introductory to advanced concepts and 

applications. Thousand Oaks, CA: SAGE. 

• Hilbe, J.M. (2009). Logistic regression models. Boca Raton, FL: Chapman & Hall/CRC. 

• Hosmer, D.W. & Lemeshow, S. (2000). Applied logistic regression (2nd edition). New 

York, NY: Wiley. 

If the purpose of the analysis is to investigate repeated measures over time for example BMI 

at a number of different time points, the analysis should account for the clustered nature of 

the data, i.e. allow that measurements within individuals be correlated. Therefore, general 

linear, logistic and multinomial regression models may not be the most appropriate 

methods when analysing this type of longitudinal data. We will be adding new sections soon 

that will illustrate a number of methods that can be applied when analysing repeated 

measures data. 
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