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3 General linear regression 

This section introduces a method, known as general linear regression, that can be used to 

examine how an outcome that has been measured on a continuous scale is associated with 

potentially explanatory variables. We offer a step-by-step illustration of how we can use this 

important statistical analysis approach to explore such associations in longitudinal data. 

 

3.1 What is general linear regression? 

General linear regression enables us to evaluate the association between a 

continuous outcome variable and one or more continuous or categorical predictor variables. 

The model we fit is linear, which means we summarise the data with a straight line that best 

describes the data by minimising the distance between the actual data and the predictions of 

the regression line. Multiple regression allows us to determine the overall fit of the model and 

the relative contribution of each of the predictors to the variance explained. With our 

longitudinal data, we can try and explain a later life outcome for a particular person by 

whatever model we fit to the data using information about that person from earlier in their life. 

 

3.2 Example research question: Is childhood intelligence related to 

body-mass index (BMI) in middle age? 

In this regression, the outcome variable bmi42 is a continuous variable that includes all values 

of BMI at age 42. In the first model we will analyse, there is only one predictor variable ‘general 

ability’ at age 11 (n920), which is also a continuous variable. 

It is always important to explore the data before running statistical models. If you have not yet 

done so, please first look at exploring the data to learn how you can examine the data. You will 

also need to have first derived a few of the explanatory variables, see main variables of 

interest, before proceeding with the regression modelling. In this work, we will adopt a 

https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/background/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/main-variables-of-interest/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/main-variables-of-interest/
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significance threshold of p=.05, meaning that we will infer statistical significance for p-values 

that fall below this cutoff. 

 

3.3 Running the regression 

In Stata, linear regressions can be run with the ‘regress’ command. This can be abbreviated 

to ‘reg’ in our code to keep our commands concise. To run the ‘reg’ command appropriately, 

we must specify the outcome variable immediately after the ‘reg’ command in our syntax, 

followed by the predictor variable(s). This is the order used in the code snippet below: 

 

Looking at the output table above, we can see that the p-value of the F-test (=61.29, p<.001 is 

below our adopted significance threshold of which means we can say that the model 

statistically significant. r-squared value approximately variance bmi at age accounted for by 

model. as there only one predictor this aria-describedby="tt" class="glossaryLink" data-

cmtooltip="General ability is a term used to describe cognitive ability, and is sometimes used 

as a proxy for intelligent quotient (IQ) scores.">general ability’ at age 11 explains only 1.4% of 

the variance of BMI at age 42. The coefficient for n920 is -.0344106 or approximately -.03, 

meaning that for 1 unit increase in general ability, we would expect a .03 decrease in BMI at age 

42. Put more simply, a study participant with a general ability score of 60 at age 11 would have 

a 1 unit lower BMI score at age 42 than a study participant with a general ability score of 30 at 

age 11. The intercept (or constant) is 27.47 and this is the predicted value of BMI at age 42 
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when ‘general ability’ equals zero. 

In the next section, we will look at how we can plot our results. 

 

3.4 Plotting the results 

To help visualise our results, we can create a scatterplot of the outcome and the predictor 

variables with the regression line plotted on top. This involves two steps: 

1. After running the regression, we create a variable containing the predicted values 

(which we have named bmi_iq1) using the ‘predict’ command. 

 

2. Then to create the plot, we use the Stata ‘twoway (scatter …)’ graph command, in 

combination with the ‘(lfit …)’ command to overlay the regression line. 
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Running the above commands with our data, the plot we generate has ‘BMI at age 42’ 

on the Y axis and ‘general ability at age 11’ on the X axis. The fitted regression line 

slopes from the left of the plot (where the intercept for ‘BMI at age 42’ is 27.5) to the 

right (where a ‘general ability’ score of 80 equals a ‘BMI at age 42’ of 24.7). However, the 

slope is fairly flat, which is to be expected given the small regression coefficient (-.03) 

we obtained in the previous step when we ran the ‘reg’ command. 

What we have run here is often called a simple regression, as it contains only 

one predictor variable. We may get a more informative insight if we extended our model 

to consider other variables that may influence the association between our predictor 

and outcome variables, and that is exactly what we will do in the next section. 

  

https://learning.closer.ac.uk/analysis/general-linear-regression/running-the-regression/
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3.5 Updating the regression model 

3.5.1 Including potential confounding variables 

We are now going to extend our model to consider variables that may influence or confound 

the association between our predictor and outcome variables. These new variables being 

considered are: sex, parents’ education and family social class. 

The sex variable has already been recoded to be binary (see the Preparing the data for 

modelling section) and in this regression analysis we are using the category ‘male’ as 

the reference group. 

In addition, we are going to include a few family background factors in the model. These 

include two parental education measures that denote whether the participant’s mother 

(n016nmed) and father (n716dade) left school at the minimum age or not; these are also 

binary variables. For both of these variables, we are using the ‘left school at the minimum age’ 

as the reference group. 

The final potential confounder we are including is the social class of the study participant’s 

father (n1171_2). This is a categorical variable with 5 values. In Stata you can automatically 

create dummy variable(s) for each of the values in a multi-category variable by appending the 

prefix of ‘i.’ to the variable name, e.g. i.n1171_2. In this instance, it means that the model will 

compare each of ‘III Skilled non-manual’, ‘III Skilled manual’, ‘IV Partly skilled’ and ‘V unskilled’ 

against the ‘I/II Prof & Managerial’ category. Stata will use ‘I/II Prof & Managerial’ as the 

reference category simply because it is the first category in the variable. 

https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/preparing-the-data-for-modelling/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/preparing-the-data-for-modelling/
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From the output table above, we can see that including the study participant’s sex and family 

background factors have not markedly changed the model. A small proportion, 4%, of the 

variance of BMI at age 42 is accounted for by family background, general ability at age 11 and 

the sex of the study participant. The participant’s general ability is still significant; for a 1 unit 

increase in general ability, we can expect a .03 decrease in BMI at age 42. The average BMI for 

females at age 42 is 1.14 lower than males, taking account of general ability at age 11. If the 

participant’s mother did not leave school at the minimum age, on average the participant’s 

BMI at age 42 was .47 lower than a participant whose mother left school. The father staying on 

at school was not significant, as this was explained by the father’s social class which was also 

included in the model. Social class and education are highly correlated; an individual’s 

educational attainment will in part reflect later occupational status which determines social 

class (You can explore this yourself as the syntax for the model above with social class 

excluded has been provided in the Stata .do file that accompanies this module). Compared to a 

participant whose father was in the highest social classes (I and II), having a father in the skilled 

and partly skilled manual social classes increased a participant’s BMI by .63 and .57 

respectively (if all other factors remained equal). If the participant’s father was instead in the 

unskilled class, the increase in BMI was on average higher by 1. 

https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/accessing-and-preparing-the-dataset/
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3.5.2 Including a childhood measure of BMI 

In our final model we add bmi11, the BMI of the study participants when they were aged 11. By 

adding BMI at age 11 we adjust for earlier measures of BMI, thereby focusing on the change in 

BMI from age 11 to age 42. This allows us to measure BMI and general ability over a comparable 

duration from the age of 11 to 42 years. 

 

The R-squared value in the output table above tells us that a quarter (25.8%) of the variance of 

BMI at age 42 is accounted for when we include BMI at age 11, as well as family 

background, general ability at age 11 and the sex of the participant, in the model. We can infer 

from the fact that mother’s education is no longer a significant predictor in this updated model 

that childhood BMI explains its significance in the earlier model. However, all other factors that 

were significant in the earlier less-adjusted model remain significant in this updated model, 

including our ‘general ability’ predictor variable. It may be that the influence of mother’s 

education on the participant’s midlife BMI, for example, reflects the family’s early eating 

habits, physical activity and health behaviours, which would be more influential in a child’s 

early life and therefore be reflected in their childhood BMI. For a 1 unit increase in general 
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ability, we would expect a .02 decrease in BMI at age 42. In other words, a participant with 

a general ability score of 60 at age 11 would have a .63 lower BMI score at age 42 than a study 

participant with a general ability score of 30 at age 11, after controlling for BMI at age 11 and 

other factors. 

However, we have still only explained a quarter (25.8%) of the variance in BMI at age 42. There 

are other factors, not included in this analysis which may play a role in that unexplained 

variance as they are known to be associated with BMI, such as physical activity, diet, sleep 

duration, socio-economic factors in later life, parent’s BMI and genetic factors. 

 

3.6 Regression diagnostics 

We have conducted this analysis without checking whether the data we have been using have 

met the assumptions underlying an ordinary least squares (OLS) linear regression. Three main 

assumptions we will however now briefly explore are normality, homogeneity of variance 

(homoscedasticity) and independence. Normality of residuals is only required for valid 

hypothesis testing, where we need to ensure the p-values are valid; it is not required to obtain 

unbiased estimates of the regression coefficients. OLS requires that the residuals are 

identically and independently distributed, i.e. the observed error (the residual) is random. 

 

3.6.1 Normality 

First, we will formally test the normality of residuals to identify if we can use our analysis for 

valid hypothesis testing. After running our final regression analysis, we can use 

the ‘predict’ command with the ‘resid’ option to calculate the residuals. We can store these 

residual values as a variable, which in this case we will call bmi_iq2, and we can then use this 

variable to then check the residuals’ normality. 
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We can plot the residuals against a normal distribution, using either the ‘pnorm’ (which is 

sensitive to non-normality in the middle range of data) or ‘qnorm’ (which is sensitive to non-

normality near the tails) commands. We are going to look at the ‘qnorm’ method, as we 

suspect that BMI is non-normal at the tails of the distribution. Previous research indicates that 

BMI is not symmetrical but is always skewed to the right, toward a higher ratio of weight (body 

mass) to height. 

 

In the above output, the ‘qnorm’ command has plotted quintiles of the residuals of BMI at age 

42 (the thicker dotted line) against the quintiles of a normal distribution (the thin diagonal 

line). If the two lines were exactly the same, the residuals of BMI at age 42 would be normally 

distributed. The plot shows that the residuals of BMI at age 42 deviate from the norm, 

particularly at the upper tail and are therefore not normally distributed. 

To numerically test for normality, we can use the ‘swilk’ test. This performs the Shapiro-Wilk 

test which tests whether the distribution is normal. 
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In the ‘swilk’ output, we can see that the test’s p-value is <.001 and therefore we can reject the 

null hypothesis that residuals in model are normally distributed. our general linear regression 

is not appropriate for valid testing. models categorising aria-describedby="tt" 

class="glossaryLink" data-cmtooltip="In analysis, the dependent variable is the variable you 

expect to change in response to different values of your independent (or predictor) variables. 

For example, a students’ test results may be (partially) explained by the number of hours spent 

on revision. In this case, the dependent variable is students’ test score, which you expect to be 

different according to the amount of time spent revising.">outcome variable BMI at age 42, 

into the top and or bottom tails may better reflect the distribution of the data. For example, 

the top of the distribution tail represents higher BMI, so transforming our continuous 

variable into a dichotomous variable (such as ‘obese’ versus ‘not obese’) would capture this 

feature of the distribution. Likewise, if we were interested in lower BMI, by transforming the 

bottom tail of the distribution into an ‘underweight’ versus ‘not underweight’ dichotomous 

variable, we would capture the opposite end of the distribution. 

 

3.6.1 Homogeneity of variance (homoscedasticity of residuals) 

A commonly used graphical method for evaluating the model fit is to plot the residuals against 

the predicted values. If the model is well-fitted, there should be no pattern evident in the plot. 

We can create such a plot by using the ‘rvfplot’ command. 
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We can see the pattern of the data points is getting wider towards the right end which is an 

indication that the model is not well fitted. This implies that our linear regression model would 

be unable to accurately predict BMI at age 42 consistently across both low and high values of 

BMI. 

 

3.6.1 Independence 

The assumption of independence states that the errors associated with one observation are 

not correlated with the errors of any other observation. This assumption is often violated if 

measures of the same variable such as the BMI of an individual are collected over time. 

Measurements nearer in time are especially likely to be more highly correlated. However, in 

this example we note BMI of an individual may be very different at age 11 than at age 42, some 

31 years later. 
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