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4 Logistic regression 

This section discusses a method that can be used to analyse the association between a 

dichotomous (two-category) outcome measure and potentially explanatory variables. This 

method is a widely used approach and the following guide provides a detailed illustration of 

how we can use this logistic regression method to answer research questions with 

longitudinal data. 

 

4.1 What is logistic regression? 

Logistic regression is an analysis method that allows us to test the association between 

an outcome variable that is dichotomous (categorical with two levels) and predictor 

variables that are either continuous or categorical. We can use logistic regression to predict 

which of two categories a person is likely to belong to given certain other information. With 

our longitudinal data, we can use logistic regression to test the probability of an event 

occurring in later life or not, based on events in early life. 

 

4.2 Example research question: Is lower intelligence in childhood 

related to obesity in middle age? 

In this regression, the outcome variable will be a dichotomous variable, ‘not obese’ or 

‘obese’ at age 42, as explained below. 

All the predictor variables are the same as those used in the general linear and multinomial 

logistic regression sections. It is always important to explore the data before running 

statistical models, so if you have not yet done so, please first look at exploring the data. You 

will also need to construct a few of the explanatory variables before creating your regression 

model, see main variables of interest. 

https://learning.closer.ac.uk/analysis/general-linear-regression/what-is-general-linear-regression/
https://learning.closer.ac.uk/analysis/multinomial-logistic-regression/what-is-multinomial-logistic-regression/
https://learning.closer.ac.uk/analysis/multinomial-logistic-regression/what-is-multinomial-logistic-regression/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/background/
https://learning.closer.ac.uk/analysis/getting-started-and-exploring-the-data/main-variables-of-interest/
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4.3 Preparing the outcome variable: Obese or not at age 42 

For this regression, we are going to derive an outcome variable, obese42, that is 

dichotomous (comprised of two groups): ‘not obese’ and ‘obese’. We do this derivation 

using the variable bmi42, a continuous variable that we also use in the general linear 

regression section. The definition of obesity that we are using as the basis of our 

categorisation is from the World Health Organisation (WHO) standards 

(http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm). A BMI of 30 and over was 

defined as obese; a BMI below 30 as not obese. Creating the obese42 variable requires a 

series of commands as illustrated below. 

 

We can then use the ‘tabulate’ command (abbreviated to ‘tab’) to get the frequency of the 

new variable. 

 

The output shows that, at age 42, approximately 1 in 6 (15.2%) of the sample are obese. 

 

https://learning.closer.ac.uk/analysis/general-linear-regression/what-is-general-linear-regression/
https://learning.closer.ac.uk/analysis/general-linear-regression/what-is-general-linear-regression/
http://apps.who.int/bmi/index.jsp?introPage=intro_3.htm
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4.4 Running the regression 

In the first logistic regression we are going to run, there will only be one predictor variable, 

‘general ability’ at age 11 (n920), which is a continuous variable. We are going to use 

the ‘logit’ command which will provide us with the untransformed beta coefficients (in log-

odd units) and their confidence intervals. These are often difficult to interpret, so are 

sometimes converted into odds ratios. If we wanted to get the odds ratios we could use the 

command ‘logistic’ instead of ‘logit’ or add the ‘or’ option (‘, or’) to the ‘logit’ example 

below. The odds ratio is the odds of success for one group divided by the odds of success for 

the other group, where in this example ‘success’ is the odds of being obese or not obese. 

When running a logistic regression in Stata, the dependent variable should be specified 

immediately after the ‘logit’ command, followed by the predictor variable(s). 

 

The output above shows that the log likelihood of the fitted model is -1892.56. The number 

itself does not have much meaning, but when used in comparisons with other models, it can 

help to identify if the reduced model fits significantly better than the full model (which we 

will come back to later when we include other predictors in the model). The overall model is 

statistically significant (chi-square = 42.48, p=<.001 which means the model including aria-

describedby="tt" class="glossaryLink" data-cmtooltip="General ability is a term used to 

describe cognitive ability, and is sometimes used as a proxy for intelligent quotient (IQ) 

scores.">general ability at age 11’ fits the data statistically significantly better than the 

model without it, i.e. a model with no predictors. The ‘pseudo R-squared’ gives a very 

general idea of the proportion of variance accounted for by the model; however it is not a 
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reliable statistic, hence its name ‘pseudo’. 

In the table, we can see the coefficient, the standard error, the z statistic, associated p-

values and the 95% confidence intervals of the coefficients. ‘General ability at age 11’ is 

statistically significant (Z=-6.52, p<.001 for every unit decrease in aria-describedby="tt" 

class="glossaryLink" data-cmtooltip="General ability is a term used to describe cognitive 

ability, and is sometimes used as a proxy for intelligent quotient (IQ) scores.">general 

ability, the log odds of being obese (compared to not being obese) increases by 0.018. 

 

4.5 Updating the regression model 

4.5.1 Including potential confounding variables 

In the next model (M2), we will add a number of possible confounding variables to the 

regression: sex, parents’ education and family social class. First we will add sex, where 

0=Male and 1=Female. As mentioned previously, this type of binary variable is also known as 

a dummy variable. In our regression analysis, the reference group is ‘male’. We are also 

going to include a few family background factors in the model: whether the cohort’s mother 

(n016nmed) and father (n716dade) left school at the minimum age or not, and the social 

class of the study participant’s father (n1171_2). Social class n1171_2 has 5 categories: ‘I/II 

Prof & Managerial’, ‘III Skilled non-manual’, ‘III Skilled manual’, ‘IV Partly skilled’ and ‘V 

unskilled’. In Stata we can use the prefix of ‘i.’ in the variable name i.n1171_2 which will 

automatically create dummy variable(s). The first category ‘I/II Prof & Managerial’ will be 

treated as the reference category for that variable. 
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‘General ability’ is still significant after controlling for the other predictor variables. For every 

1 unit decrease in general ability, the log odds of being obese (compared to not being obese) 

increases by 0.013. In addition, if the participant’s father was in the manual or unskilled 

social classes, by age 42 the participant was more likely to be obese, compared to 

participants whose fathers were professional or managerial. In this model, the coefficients 

for sex and mother’s and father’s education were not significant, that is to say, we have not 

found that the log odds of being obese or not obese at age 42 differ between men and 

women, or according to parental educational level. 

 

4.5.2 Including a childhood measure of BMI 

For our final model (M3), we will also add bmi11, the BMI of the participants when they were 

aged 11. Doing so means that we will be adjusting for participant’s baseline BMI, and that 

will allow us to focus on the subsequent change in BMI from age 11 to age 42, and therefore 

to measure both BMI and general ability over a comparable period, from childhood to 
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middle age. 

 

The results above show that for a 1 unit increase in BMI at age 11, the log odds of being 

obese at age 42 increases by 0.353. After controlling for BMI at age 11 and all the other 

predictors, being female compared to male decreases the log odds of obesity by 0.185. In 

addition, having a father in the lower social classes compared to one with a 

professional/managerial occupation increases the odds of obesity at age 42. 

 

4.6 Exploring predictors' influence and predicted probabilities on 

the outcome 

4.6.1 Testing the influence of a specific categorical variable 

We can examine the overall effect of social class using the ‘test’ command. To specify which 

levels of the categorical n1171_2 social class variable we wish to compare to the reference 

category (‘I/II Prof & Managerial’), we include a prefix denoting the numeric code for each 

other category (e.g. ‘III Skilled non-manual’ is the second category so this is denoted 

as 2.n1171_2). 



Authors: Vanessa Moulton, Dara O’Neill, Alison Park and George B. Ploubidis 

Suggested citation: Moulton, V., O’Neill, D., Park, A. & Ploubidis, G.B. (2020). Regression analysis of 

longitudinal data. CLOSER Learning Hub, London, UK: CLOSER 

 

From the output of the ‘test’ command above, we can see that the overall effect of social 

class is statistically significant (p<.05> 

We can also examine the differences in the coefficients for each of the different social 

classes compared to the reference category. For instance, we could again use the ‘test’ 

command, as shown in the example below, to evaluate whether the coefficient for social 

class ‘III Skilled non-manual’ is equivalent to the coefficient for social class ‘III Skilled 

manual’. 

 

The output above shows that the p-value is under <.05 (our threshold for inferring statistical 

significance) and we can consequently say the coefficients for these two categories are 

different. 

 

4.6.2 Testing predicted probabilities of our explanatory variable of interest on 

our outcome variable 

Focusing on our predictor of interest ‘general ability’, we can use predicted probabilities to 

help understand the relationship between general ability and obesity in the model. In this 
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example we want to calculate the predicted probability of obesity for a given score on 

the general ability test. Predicted probabilities can be calculated using 

the ‘margins’ command. We can use this command to create the predicted probabilities for 

values of the general ability test (n920 which ranges from 0 to 79) from 10 to 80 in 

increments of 10. The ‘margins’ command uses the sample values of other predictor 

variables to calculate the average predicted probabilities on our predictor of interest. We 

can also use the ‘vsquish’ option in the command to help tidy up the output as this removes 

blank lines in output tables. 

 

The first part of the output above tells us which row is associated with which general 

ability test score. Row 1 corresponds to a test score of 10, while row 8 is equal to a test score 

of 80. We can interpret from the table that as the test score at age 11 increases, the 

probability of obesity at age 42 is decreasing from 21.8% to 10.2%. 
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4.6.3 Plotting the predicted probabilities 

We can present the results as a graph by using the ‘marginsplot’ command, which plots 

both the predicted probabilities and their confidence intervals. 

 

In the output plot above, the ‘predicted probability of obesity at age 42’ is on the Y axis and 

the ‘general ability test score at age 11’ is on the X axis. The fitted line decreases from left to 

right, indicating that as general ability scores increase, the probability of obesity decreases. 

The predicted probability of obesity at age 42 would be 17.8% with a test score of 30 at age 

11, compared to 12.9% with a test score of 60. 

 

4.7 Comparing model fit of the logistic regression models 

As we mentioned earlier, the log likelihood of the fitted model is used to compare to other 

models, to identify if the reduced model fits significantly better than the full model. In order 
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to compare models, in Stata we can use the ‘estimates store’ and ‘lrtest’ commands. We 

will re-run the same models we have just completed in the previous logistic 

regression examples. Each model is estimated and stored using the command ‘est 

store’ under an arbitrary name; in this example we are labelling them M0 to M3. You can use 

the ‘quietly’ command in front of the ‘logistic’ command to run the models in the 

background (i.e. Stata stores the output rather than writing it out at the time the command 

is run). It is possible to include code comments or annotations (text that explains the code 

you are running) in the Stata command window by starting the comment line with an 

asterisk (‘*’). 

 

We will then use the ‘lrtest’ command to test whether the log likelihoods for each model are 

significantly different to each other. 

https://learning.closer.ac.uk/analysis/logistic-regression/running-the-regression/
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In the output above, the log-likelihood test for M1 v M0 is the same result as the first 

model we ran in this set of ‘logit’ examples. This is because we are comparing the empty 

model (M0) with M1 which has only one predictor variable: general ability (chi-square = 

42.48, p=<.001 in the second comparison above>M2 v M1), we can see that the addition of 

sex and family background variables to the model marginally improves the fit (chi-square = 

20.79, p=<.01 while adding a single predictor at age in m3 makes notable further 

improvement to the model fit p="<.001)." final test>M0 v M3 compares the original model 

with no explanatory variables and our final model; unsurprisingly given the other results, 

this again shows that adding all the predictors improves the fit over the empty model (chi-

square = 589.41, p=<.001> 

https://learning.closer.ac.uk/analysis/logistic-regression/running-the-regression/
https://learning.closer.ac.uk/analysis/logistic-regression/running-the-regression/
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4.8 Regression diagnostics 

When modelling a binary outcome variable, unlike in linear regression there are no typically 

agreed statistical tests that can be used in the diagnostic process. However, you can find out 

more from the following sources: 

• Menard, S. (2010). Logistic regression: From introductory to advanced concepts and 

applications. Thousand Oaks, CA: SAGE. 

• Hilbe, J.M. (2009). Logistic regression models. Boca Raton, FL: Chapman & Hall/CRC. 

• Hosmer, D.W. & Lemeshow, S. (2000). Applied logistic regression (2nd edition). New 

York, NY: Wiley. 
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