Attrition. Over time, participants may cease to take part in a longitudinal study. This is known as attrition. Attrition can result from a range of factors, some of which are unavoidable, while others can be reduced by careful study design or practice.
Unavoidable attrition might be caused by a participant dying, or leaving the country of interest (emigrating). Sometimes attrition occurs when the study team cannot find a participant to invite them to take part. For example, a participant might move house between sweeps and forget to update their contact information. Longitudinal studies use a range of methods to trace their participants in order to prevent this from happening.
Attrition can also occur because participants simply choose not to take part. Participants can choose not to be interviewed in a particular sweep, or can drop out of the study altogether. Again, longitudinal study teams usually have participant engagement strategies to encourage participants to stay involved.
Attrition is problematic for two main reasons. First, attrition reduces the size of the sample, and if the sample becomes too small, it jeopardises statistical power. Second, if attrition is not random, it can lead to non-response bias (which affects the validity of the study findings).
There are a number of ways in which studies try to avoid attrition happening in the first place. Once it has happened, there are analytical approaches that can help compensate for it.
Conditioning. It is possible that participants’ answers to some study questions may be influenced by their participation in the study – in other words, that their responses are ‘conditioned’ by their being members of a longitudinal study. This is referred to as panel conditioning. Examples would include study participants answering questions differently or even behaving differently as a result of their participation in the study.
Limits of representivity. Limits of representivity. Because cohort studies focus on following a specific group (rather than a representative sample of the population as a whole), they are only representative of that specific group. For instance, the 1970 British Cohort Study yields vital information about people born in that year, but does not tell us anything about the generations that precede or follow it. This attribute of cohort studies can be partly overcome by comparing different cohorts to see how their experiences and circumstances differ. Unless cohort studies seek to refresh their samples, they will also not include people born within the relevant time period who have arrived in the sample area since the study began.
Complexity. The datasets can be more complex to manage and analyse than the data for cross-sectional surveys.
Timeliness. By definition, the value of longitudinal studies builds up gradually over time. However, this means that researchers need to wait until the participants get older before they can answer some key research questions.
Longitudinal studies also face the risk that, by the time participants are old enough to allow researchers to answer certain questions, some of the original measures could appear out of date while the overall social and policy landscape may have changed. Equally, the content and design of a new prospective study will inevitably be shaped by the research context at the point at which it was set up. Questions or measures that, with hindsight, seem obvious ones to have collected at the outset of the study may not have seemed so obvious at that time.
Cost. A longitudinal study with a number of waves of data collection will tend to be more expensive than the equivalent number of fresh cross-sectional studies. This reflects the additional complexity involved in designing, maintaining and carrying out longitudinal data collection.
The Learning Hub is a resource for students and educators
tel | +44 (0)20 7331 5102 |
---|---|
closer@ucl.ac.uk |
Sign up for our email newsletters to get the latest from CLOSER
Sign up