Longitudinal studies have a number of particular advantages in terms of the quantity or quality of the data that they collect:
Detail over the life course. The value of longitudinal studies increases as each sweep builds on what is already known about the study participants. This means that on many topics, longitudinal studies typically contain far more detailed information than could be collected through a one-off survey. For example, many studies collect a detailed array of information about study participants’ education, work histories and health conditions.
Establishing the order in which events occur. Longitudinal data collection allows researchers to build up a more accurate and reliably ordered account of the key events and experiences in study participants’ lives. Understanding the order in which events occur is important in assessing causation.
Reducing recall bias. Longitudinal studies help reduce the impact of recall error or bias, which occurs when people forget or misremember events when asked about them later. In longitudinal studies, participants provide information about their current circumstances, or are asked to remember events over only a short period of time (that is, since the time of the last sweep).
Many of the advantages of longitudinal studies relate to the analytic questions their data can help address. For example, longitudinal data help with:
Exploring patterns of change and the dynamics of individual behaviour. Longitudinal data allows researchers to explore dynamic rather than static concepts. This is important for understanding how people move from one situation to another (for example, through work, poverty, parenthood, ill health and so on).
The link between earlier life circumstances and later outcomes. By building up detailed information over time, longitudinal studies are able to paint a rich and accurate picture of participants’ lives.
In the case of birth cohort studies this has allowed researchers to explore how circumstances earlier in life can influence later outcomes. For example, some of the most well-known findings from the cohort studies describe the long-lasting reach of socio-economic disadvantage in childhood.
Longitudinal data also allow us to assess the time-related characteristics of particular events or circumstances (that is, their duration, frequency or timing). For example, does the impact of ill health change depending on when in their life someone becomes ill, how long they remain ill, and how often they experience illnesses?
Providing insights into causal mechanisms and processes. Many surveys provide evidence about the association between particular circumstances and outcomes. For example, a cross-sectional study might find that the unemployed have poorer health than those in work (so, in other words, there is an association between health and employment status). But interpreting this association is more challenging. Might, for example, unemployment be the cause of poor health – or perhaps poor health could lead to unemployment? Longitudinal data cannot definitively ‘prove’ causality, but unlike data from cross-sectional studies, it has a number of important attributes that give more insights into the causal processes that might be involved:
Distinguishing between age and cohort effects. Longitudinal studies can help researchers to distinguish between changes that happen as people get older, known as ‘age effects’, and generational differences that reflect the historical, economic and social context within which different cohorts grew up, known as ‘cohort’ or ‘generational’ effects.
For example, cross-sectional data might show a clear relationship between age and political affiliation (with older age groups being more likely to vote for the Conservative party). Longitudinal data would allow analysts to investigate whether the older generations in the UK are more likely than younger ones to support the Conservative party (a cohort effect), or whether people all people become more likely to vote Conservative as they get older (an age effect).
Age and cohort/generational effects also need to be distinguished from ‘period’ effects; these refer to forces that influence everyone – for example, key events in history that affect everyone irrespective of their age or the generation they were born into.
The Learning Hub is a resource for students and educators
tel | +44 (0)20 7331 5102 |
---|---|
closer@ucl.ac.uk |
Sign up for our email newsletters to get the latest from CLOSER
Sign up