As covered in the previous sections, most longitudinal study teams aim to select representative samples that reflect the composition of the target population. However, unless the starting sample is very large indeed, this means that there will be relatively small numbers of participants from minority groups.
While the proportions of participants from minority groups might accurately reflect the make-up of the wider population, the small numbers can constrain the research that can be done using these groups.
For example, imagine a particular group represents 2 per cent of the UK population as a whole. If a longitudinal study achieves 8,000 interviews in its first sweep of data collection, it will include around 160 participants from the minority group – too small for any detailed statistical analysis, especially if some of these participants drop out at subsequent sweeps.
As a result, some studies now ‘boost’ the number of participants from particular. Examples of longitudinal studies that have taken this approach include:
If a study contains a boosted number of participants from a particular group, survey weights should be applied to adjust the overall results so that they are representative of the population as a whole. Sample weighting involves some individuals counting as less than one case, while others may count for more.
The Learning Hub is a resource for students and educators
tel | +44 (0)20 7331 5102 |
---|---|
closer@ucl.ac.uk |
Sign up for our email newsletters to get the latest from CLOSER
Sign up